Was all Coal made at the same time?
- Oct
- 28
Was all Coal made at the same time or not is an ongoing debate with coal geologists.
Steve Mould discusses his opinion on why almost all the coal in the world was made at the same time.
Mould suggests most of the coal on earth was created during a single short period of geological history 300 million years ago. It’s called the carboniferous period. Watch Mould below to find out why coal production stopped so abruptly.
Dr Judy Bailey, a coal geologist, and coal and sedimentary petrologist, addresses the question: Is coal still being formed today?
Is the process that is at the origin of coal still existent, why or why not, and where does proof of it exist? Is it correct that today’s fungi that attack the wood substance lignin did not exist in the Carboniferous period and explains the existence of coal?— Ban
Most of us rarely pick up a piece of coal these days, but if you do find a lump of the black rock, you’ll be holding a piece of geological history.
“In general, a high quality black coal seam would take millions of years, if not hundreds of millions of years to form” says Dr Judy Bailey, coal geologist at the Discipline of Earth Science University of Newcastle
The process of coal formation is still taking place today, says Bailey.
“The precursor to coal is called peat, and that is just uncompressed plant matter.”
Peat accumulates in wet swampy environments known as mires, and that process is taking place today in areas such as Indonesia and even the Antiplano in the Andes.
“Mires are swamps with trees growing in them, swamps with reeds, stagnant water into which pollen and plant matter fall, and coastal lagoons. Peat can even form in the highlands in rain-fed or glacier-fed lakes in mountain ranges.”
However, peat accumulates very slowly at about one millimetre a year on average, says Bailey, although it can happen faster, up to 2 to 3 millimetres per year in the tropics. At that rate, it would take about 12,000-60,000 years to accumulate enough peat to form a three-metre coal seam.
The transformation from peat to coal takes even longer. It generally starts with burial of the peat by other sediments as a result of a volcanic eruption, migration of a river or a change in sea level.
“The pressure of overlying sediment squeezes the water out and causes the peat to compress,” says Bailey. The thickness of the peat will be decreased by about ten to one during this process.
The transformation from a plant substance to a metamorphic rock really starts once the peat is buried beneath 3 — 4 kilometres of sediment. At this depth, with an average rate of temperature increase of 30°C per kilometre, the temperature rises to over 100°C and sets off chemical reactions that transform the material into coal.
“The chemical reactions release volatiles,” says Bailey, “They help to compress the peat even more and it changes from being a plant substance, like lignin or cellulose, to a geopolymer that contains concentrated carbon. It’s very different from peat or plant matter.”
The amount of transformation from peat to coal is described by a coal’s rank.
“Brown coal and lignite are the lowest rank, then bituminous or black coal. As the temperature and pressure rises even more it changes to anthracite. And eventually some of the earliest coals that would have formed have been metamorphosed into graphite.”
The Carboniferous and fungi
The formation of coal seams really kicked off with the diversification of land-based plants around 350 million years ago.
“That was pretty much from the end of the Devonian into the Carboniferous period. Algae was around long before then in shallow seas, so there are coals made completely of algae that date back earlier than the Carboniferous.”
The Carboniferous period (300-360 MA) saw the evolution of tall lycopod trees that accelerated the rate at which peat could be formed in tropical equatorial mires. High sea levels and a warmer climate also encouraged coal formation, by extending the area of coastal mires and other wetlands.
Last year, researchers suggested that the evolution of white rot fungi — the fungus that breaks down plant lignin — at the end of the Carboniferous period may have slowed down coal formation. But Bailey disagrees with this theory.
“Coal formation underwent a drastic change at the end of the Carboniferous period, but for other reasons,” she says.
“There was a global ice age at the end of the Carboniferous, and the continents were drifting to new locations, so coal accumulation occurred in cold temperate places, closer to the poles.
“The cold favoured a new type of plant called Glossopteris, dominated by gnarly little trees which lost their leaves in winter.
“Plants grow more slowly in the cold, so this could have slowed peat accumulation, but frozen plant matter is less easily decayed and better preserved. It would be hard to distinguish any change in peat accumulation rate due to white rot fungi from the effects that climate change were having on peat.”
Peat continued to accumulate strongly throughout the Permian (245-300 MA), when coalfields in the Hunter, Newcastle and Illawarra were forming. However it paused for a period at the Permian — Triassic boundary.
“Coal formation did stop for about 15 million years at the end of the Permian,” says Bailey, “but this was due to a global extinction which wiped out most land plants. About 90 per cent of all species on Earth were wiped out at this time.”
Once the plants recovered, coal formation began again. This started with the recovery of spore-generated ferns, and a global “fern-spike”. Land plants were unusually dominated by ferns until other plants regenerated.
While the coal-forming process is still happening today, we interrupt that process when we mine coal, particularly of lower rank. If we left lower rank brown coal for a few more million years it would turn into black coal.
“Coal takes longer to form than any other rock type,” says Bailey.
Ironically, warming of the Earth’s climate may increase the number of swampy coastal environments that are perfect for coal formation. But these coal seams won’t be ready for a few million years.
“Industrial use of fossil fuels producing carbon dioxide faster than the ocean can dissolve it or plants store it, will regenerate tropical coal-forming conditions.
“This is a typical feedback cycle that regenerates the planet over geological time scales, but does not happen on a fast enough timescale to make dependence on fossil fuels sustainable for humankind right now.”
Planting trees for carbon capture
A final thought on planting trees for carbon capture. In a forest, when a tree dies, another tree grows in its place recapturing the carbon. But also, it takes a very long time to release the CO₂. Like hundreds of years. So in terms of tackling climate change which is a problem of human time scales, it’s a useful endeavour.
Recent Posts
- Alberta’s Highest Court Squeezes Alberta’s Coal Plans
- Province planning cleaner water in Elk Valley
- B.C. Fines Teck Coal Over $220K for Unauthorized Waste Spills
- Alberta Study Claims Mines Spreading Toxic Organic Contaminants
- Teck Named to 2024 Best 50 Corporate Citizens in Canada
Elk Valley Coal Links
- Centerpoint Resources Inc. A mine exploration and development company that owns Bingay Coal.
- City of Fernie The cultural and activity centre of the Elk Valley.
- Crowsnest Pass Coal Mining Ltd. Potential for a significant underground mine operation producing high quality coking coal.
- District of Elkford Founded in 1971 as a home for miners working at Fording Coal.
- District of Sparwood Sparwood, BC is yours and mine to discover!
- Elk River Alliance The Elk River Alliance has spent over a decade monitoring the Elk River Watershed
- Elk Valley Resources Elk Valley Resources (EVR) operates four steelmaking coal mines in the Elk Valley.
- Fernie.com Everything you need to know about Fernie BC.
- Glencore Owns a 77% interest in Elk Valley Resources.
- Grizzly Discoveries Grizzly is a Canadian exploration company exploring for gold and base metal deposits.
- Jameson Resources Ltd. Coal Mountain Coking Coal in Alexander Creek.
- Ktunaxa Nation Working together, managing our lands and resources, within a self-sufficient, self-governing Nation.
- Mining Association of British Columbia Represents the needs and interests of coal, metal, industrial mineral companies and smelters.
- Nippon Steel Japan’s largest steelmaker with a 20% interest in Elk Valley Resources.
- North Coal Ltd. Focused on the exploration and development of the Michel Creek Coking Coal Project.
- Pacific American Coal Ltd. Identified a 257 million tonne JORC resource at its Elko Coking Coal Project
- POSCO A South Korean steel-making company headquartered in Pohang with 3% interest in EVR.
- Teck Resources Ltd. Canada’s Largest Diversified Resource Company.
- United Steelworkers Local 9346 The Trade Union for the hourly employees at Teck Coal Ltd. – Elkview Operations
- Wildsight Working to protect wildlife, water and wild places in Canada’s Columbia and Rocky Mountain regions.